Andrea Milani and Daniele Serra, two mathematicians from the University of Pisa have published the study in the journal “Nature” which has, for the first time, measured the asymmetrical component in the north-south gravitational field of Jupiter. This is one of the fundamental elements for the modeling of the internal structure of the planet.
Jupiter (Image credit: NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM)
The research is part of Juno, a NASA mission whose goal is to explore Jupiter. A spacecraft with nine instruments needed to carry out the experiments, is orbiting around the giant planet to determine its internal structure and composition, study the atmosphere, and map the magnetosphere. In particular, the research group from the University of Pisa, in collaboration with La Sapienza University of Rome, the University of Bologna-Forlì and the NASA Jet Propulsion Laboratory, has worked on determining the gravitational field through the analyses of Doppler data sent from the probe.
“Thanks to funding from the Italian Space Agency we have developed software which implements high-precision, refined mathematical models,” explains Daniele Serra. “Consequently, we are now able to determine the symmetrical part of Jupiter’s gravitational field a thousand times more accurately than in the past, and for the first time also the asymmetrical part, i.e. the part determined by a diverse distribution of the mass with respect to the equator. We have discovered that Jupiter’s northern hemisphere has a different mass distribution than the southern hemisphere; in other words Jupiter is pear shaped.”
“Given that Jupiter has played a fundamental role in the evolution of the Solar System,” concludes Andrea Milani, ”a complete and in-depth knowledge of the planet and how it was formed can provide clues as to the formation of the planet Earth and further our understanding of the origin of life on Earth.”